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BRELO N
/\/Si(CHa)a + R/CHO v Q
RCN/ it ;
NHCOR'

where R=R’= alkyl, aryl

The reaction of aldehyde with allylsilane in acetonitrile
mediated by boron trifluoride etherate generated 4-aminotet-
rahydropyrans in good yields. The product is highly stereo-
selective.

Multicomponent reactions are gaining interest in organic
synthesis due to its ability to form multiple bonds in a single

Note

synthesis of 4-hald-4-thio-8 4-azido-? 4-aryl-1° and 4-hydroxy-
tetrahydropyraief7411 methods for the synthesis of 4-ami-
notetrahydropyran are limitéd. In this paper, an efficient
method for the synthesis of 4 aminotetrahydropyran from
aldehyde, trimethylallylsilane, and acetonitrile mediated by-BF
Et,O is disclosed (Scheme 1). Thus, when benzaldehyde was
subjected to react with allyltrimethylsilane in acetonitrile in the
presence of boron trifluoride etherate, 4-acetamido-2,6-diphe-
nyltetrahydrofuran was obtained in 70% vyield.

SCHEME 1. Synthesis of 4-Acetamidotetrahydropyran
n, O oR
/\/Si(CHz.)s + R/CHO BF3AEt20, ' |
CH,CN/ tt ;
NHCOCH,

where R= alkyl, aryl

The reaction is generalized in Table 1. In all of the cases
studied, 4-acetamidotetrahydropyrafis-11b could be obtained
in high purity without any side products. Both aliphatic and
aromatic aldehydes give good yields with high diasteroselectivity
as determined from thi#d and*3C NMR spectrum of the crude
product. The substituent on the aromatic ring has a promising
effect on this reaction. The electron-withdrawing and simple
aldehydes gave good yields compared to electron-donating
groups on the ring. On the other hand, aliphatic aldehydes are
better substituents than the aromatic aldehydes. Only a single
diastereomer was obtained from each reaction, which was
determined byH and*3C NMR and comparison of the authentic
samples!2The conformations of the compounds are in the chair

step? Substituted tetrahydropyrans are important targets because€form, and all three substituents are in the equatorial position.

of their presence in many natural produtfBhese tetrahydro-
pyrans are prepared by hetero-Diefdder methods, manipula-
tion of carbohydrate$,Prins cyclizatior, and intramolecular
Michael reaction$.Although there are a few methods for the

(1) ()Tietze, L. F.; Beifus, UAngew. Chem., Int. EAL993 32, 131.
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H.; Parvin, T.; Ali, M. A. Tetrahedron Lett2006 47, 8137.

(2) (@) Nicolaou, K. C.; Sorensen, E. Qlassics in Total Synthesis

VCH: Weinheim, 1996. (b) Perron, F.; Albizati, K. F. Org. Chem1987,
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This was confirmed by NOE experiments and single-crystal
X-ray analysis (ORTEP diagram dfb in the Supporting
Information)13

Other nitriles such as dichloroacetonitrile and bezonitrile also
gave the corresponding protected 4-aminotetrahydropyréns
6d in good yields (Table 2).
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SCHEME 2.

RCHO ——

/\/SiMes

Mechanism of the Reaction

Lewis Acid

1

Sakurai-Hosomi reaction

TABLE 1. Synthesis of 4-Aminotetrahydropyran

2.
R A
2

RCHO

Prins cycllsatlon

SINo. | Substrate (a) time/h Product (b) \Eizl)da
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| | |
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36 1 O
U
l%lHAc
7 CHO P
36 O | 45
I%IHAc
CHO
O | e O " e
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leAc
10 ~cHo 12 /Cj\ 03
lleAc
Hi5Cs s, O wCoMis
11 A5 cHo | 12 l/\;l -

aYields refer to isolated yield. Compounds are characterizetHpy*C

NMR and IR spectra.

The major advantage of this reaction is that in a single step,
three reactions, primarily (i) SakuraHosomi, (ii) Prins cy-

JOCNote

+O‘)l\ N
W ) [
H
3
Ritter reactionl MeCN

0 R
R H0 |R Ne
NHCOCH 2
. H 8 -~ A N

H H
4

TABLE 2. Synthesis of 4-dichloroacetamido- and
4-benzamidotetra-hydropyran

SINo. | Aldehyde (c) Nitrile time/h Product (d) Y(:)/e:)da
NO,
1 /©/ CI,CHCN 12 O @ 92
NHCC\OHCI2
CHO °2N\© @/NO; &7
CN
2 O’ ©/ 12 @
ON

NHCOPh

O OO 65

NHCOCHCI,

CL,CHCN 8

N

CHO ©/ 8 OOO 61
ﬁHCOPh

0.
CL,CHCN 8 ]’\J

NHCOCHCI,

CN H!SCB “,, o} .\\C6HV3
©/ 8 ]’\J 65

NHCOPh

| O
O

aCeHys

5 A cHo 76

6 | ~ 3 cHo

aYields refer to isolated yield. Compounds are characterizetdtby3C
NMR and IR spectra.

clization, and (iii) Ritter, can be performed without any
difficulties. To our knowledge, this is the first single-step method
for the synthesis of symmetric 2,6-disubstituted 4-acetamidot-
etrahydropyran. The mechanism of the reaction can be explained
as follows. In the presence of Lewis acid, allyltrimethylsilane
1 reacts with aldehyde to afford intermedi2téScheme 2). The
intermediate2 reacts with another molecule of aldehyde to give
tetrahydropyranyl catio, which in the presence of neucleo-
phile, CHCN, gives intermediated. The species4 upon
hydrolysis gives the 4-acetamidotetrahydropysan

This method will be of immense importance in organic
synthesis, as the 4-aminotetrahydropyran skeleton is a core
structure in a number of bioactive molecdtesind natural
products such as ambruticins VS, glycamino acid, sialic acid,

(14) (a) Gopalsamy, A.; Moore, W. J.; Kern, J. C.; Molinari, A. J.; Shi,
M.; Welmaker, G. S.; Wilson, M. A.; Krishnamurthy, G.; Commons, T. J.;
Webb, M. B.; Woodworth, R. P. PCT. Int. Appl. WO 2006124875 A2,
2006, 516 pp. (b) Braun, A.; Courtemanche, G.; Crespin, O.; Fett, E.; Pascal,
C. Fr. Demande FR 2873690 Al, 2006, 59 pp. (c) Bandiera, T.; Lombardi
Borgia, A.; Polucci, P.; Villa, M.; Nesi, M.; Angiolini, M.; Varasi, M. PCT.

Int. Appl. WO 2007068619 A1, 2007, 238 pp. (d) Duan, J.; King, B. W.;
Decicco, C.; Maduskuie, T. P.; Voss, M. E. US Patent Appl. US 2004072802
A1, 2004, 150 pp.
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JOCNote

and otherg5 This type of skeleton is also used in photographic 70%) as a crystalline solid with mp 22224 °C. The productlb

films and host-guest chemistry? is characterized by spectrometric metholl$.NMR (400 MHz,
In summary, an efficient, highly diastereoselective one-pot CPCl): 0 1.38-1.48 (m, 2 H), 1. 96 (s, 3 H), 2.252.30 (m, 2

method for the synthesis of 2,6-disubtituted 4-amidotetrahy- H), 4.32-4.44 (m, 1 H), 4.65 (dd)=11.2 and 2.0 Hz, 2 H), 5.60

. \ d, J= 8.0 Hz, 1 H), 7.25-7.43 (m, 10 H)13C NMR (100 MHz,
dropyran in good yields has been developed. The scope andopy ™5 53 57406, 46.9, 78.5, 125.9, 127.7, 128.5, 142.2, 169.6.

synthetic applications of this novel reaction are under investiga- |5. 3596 2922 2846 1640 1543. 1493. 1446. 1282 1114. 1064

tion in our laboratory. cm L. Anal. Calcd for GH.NOy: C, 77.26; H, 7.17; N, 4.74.
Found: C, 77.42; H, 7.20; N, 4.69.
Experimental Section N-[2,6-Bis-(4-nitrophenyl)tetrahydr-pyran-4-ylbenzamide (2d,

Table 2). To a mixture of nitrobenzaldehyd@c (151 mg, 1.0

General Procedure. To a mixture of aldehyde (1.0 equiv),  mmol), allyltrimethylsilane (0.10 mL, 0.6 mmol.), and benzonitrile
allyltrimethylsilane (0.6 equiv), and nitrile (5.0 mL) was added (5.0 mL) was added borontrifluoride etherate (0.15 mL, 1.2 mmol)
borontrifluoride etherate (1.2 equiv) drop by drop at rt. The reaction drop by drop at rt. The reaction mixture was strirred at rt for 12 h.
mixture was strirred at rt for specified time. The progress of the Progress of the reaction was monitored by TLC using ethyl acetate
reaction was monitored by TLC using ethyl acetate and hexane asand hexane as eluents. After completion of the reaction, the product
eluents. After completion of the reaction, the product was extracted was extracted with ethyl acetate and washed with brine and water.
with ethyl acetate and washed with brine and water. The organic The organic layer was dried (M8Os) and evaporated to leave the
layer was dried (N£50;) and evaporated to leave the crude product, crude product, which was purified by short column chromatography
which was purified by short column chromatography over silica over silica gel to giveN-[2,6-bis(4-nitrophenyl)tetrahydropyran-4-
gel to give the title compounds. ylbenzamide2d (300 mg, 67%) as a crystalline solid with mp 263

4-Acetamido-2,6-diphenyltetrahydropyran (1b, Table 1).To 264 °C. The product2d was characterized by spectrometric
a mixture of benzaldehydéda (0.10 mL, 1.0 mmol), allyltrimeth- methods.'H NMR (400 MHz, CDCYDMSO-dg): ¢ 1.52-1.61
ylsilane (0.10 mL, 0.6 mmol), and acetonitrile (5.0 mL) was added (m, 2 H), 2.3+2.35 (m, 2 H), 4.36-4.45 (m, 1 H), 4.844.86
boron trifluoride etherate (0.15 mL, 1.2 mmol) drop by drop at rt. (m, 2 H), 6.10 (s, 1 H), 7.657.67(d,J = 8.8 Hz, 2 H), 8.24-8.25
The reaction mixture was strirred at rt for 24 h. Progress of the (d, J = 8.8 Hz, 2 H), 8.35 (dJ = 6.4 Hz, 1 H).23C NMR (100
reaction was monitored by TLC using ethyl acetate and hexane asMHz, CDCL/DMSO-ds): ¢ 37.8, 46.1, 65.7, 76.2, 122.6, 125.7,
eluents. After completion of the reaction, the product was extracted 146.2, 148.1, 162.7. IR: 3274, 3087, 2923, 2840, 1673, 1602, 1558,
with ethyl acetate and washed with brine and water. The organic 1516, 1350, 1284, 1207, 1127, 1084, 850, 809, 746cranal.
layer was dried (Ng&50Oy) and evaporated to leave the crude product, Calcd for GgH17CloNzOs: C, 50.24; H, 3.77; N, 9.25. Found: C,
which was purified by short column chromatography over silica 50.35; H, 3.81; N, 9.18.
gel to give 4-acetamido-2,6-diphenyltetrahydropytsn(207 mg,
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